

Institut National de la Recherche Agronomique AQUAPOLE

Quartier Ibarron, 64310 Saint Pée sur Nivelle Tél. 05 59 51 59 51 – Fax 05 59 54 51 52

www6.bordeaux-aquitaine.inra.fr/st_pee www.bordeaux-aquitaine.inra.f

LES POPULATIONS DE SAUMONS, TRUITES DE MER ET GRANDES ALOSES DE LA NIVELLE EN 2012

F. Lange⁽¹⁾, E. Carlut⁽¹⁾, E. Prévost⁽¹⁾, S. Servant⁽¹⁾

Collaboration technique:

J.M. Trounday (2), J. Jaureguy (2), J. Fargues (2), D. Balesta (2), O. Briard (4), B. Sourzat (4), A. Gonçalves (3), J. Rives (1), F. Guéraud (1), E. Huchet (1)

- Mai 2014 -

- (1) INRA, UMR ECOBIOP, AQUAPOLE, Quartier Ibarron 64 310 St Pée sur Nivelle.
- (2) MIGRADOUR, Building des Pyrénées, 2 E, 64000 Pau.
- (3) Fédération des Pyrénées Atlantiques des Associations Agréées pour la Pêche et la Protection du Milieu Aquatique, Maison de la Nature, 12 boulevard Haute Rive, 64000 Pau.
- (2) AAPPMA Nivelle, Chemin du moulin d'Ibarron, 64310, Saint Pée sur Nivelle.

LES POPULATIONS DE SAUMONS, TRUITES DE MER ET GRANDES ALOSES DE LA NIVELLE EN 2012

F. Lange⁽¹⁾, E. Carlut⁽¹⁾, E. Prévost⁽¹⁾, S. Servant⁽¹⁾

- Mai 2014 -

RESUME

Un échantillon de 26 sujets adultes de la Nivelle est obtenu par piégeage à la station de contrôle d'Uxondoa, à 4,7 km en amont de la limite de salure des eaux. La totalité des remontées est estimée à 91 saumons (50 individus piégés sur Uxondoa et Olha). Cinq de ces poissons sont des sujets égarés provenant d'un autre système (Bidassoa ou autres) et caractérisés par l'ablation de l'adipeuse. Les autres, considérés par défaut comme étant originaires de la Nivelle, appartiennent à trois classes de naissance différentes (2008, 2009, 2010). Les taux de retour des tacons d'automne d'âge 0+ sont, pour la classe 2008 de 2.91 %, et pour les classes 2009 et 2010, dont les retours ne sont pas achevés, respectivement de 1.2 et 0.47 %.

Les saumons de deux ans de mer, qui constituent 17.8 % des effectifs de sujets originaires de la Nivelle, remontent à Uxondoa au printemps, tandis que les castillons, 82.2 % du stock, arrivent principalement en automne. Aucun individu ne revient pour la seconde fois. Les migrations ont encore lieu tardivement car 76 % des effectifs transitent après août. La population autochtone est principalement constituée de retours de smolts d'un an (91.9 % des castillons), elle est plus équilibrée pour les saumons de deux ans de mer (62.5 %). Les femelles représentent 44.4 % de la population locale, soit 35.1 % des castillons et 87.5 % des sujets de deux ans de mer.

Un stock de 179 000 œufs est déposé dans le bassin accessible aux géniteurs en décembre et début janvier, aux densités de 9.6 œufs/m² de courants vifs dans la basse Nivelle, de 1.6 œufs/m² en haute Nivelle et 3.6 œufs/m² dans l'affluent principal, le Lurgorrieta.

L'effectif de truites de mer de la Nivelle (23 sujets à Uxondoa) constitué en majorité de finnocks (0+ année de mer) est identique par rapport à ceux des dernières années.

Les effectifs de grandes aloses contrôlées au piège d'Uxondoa sont identiques à 2011 (326 sujets) avec une année qui reste supérieure par rapport à la moyenne 1994-2012.

1 - INTRODUCTION

Les populations de saumon atlantique, de truite de mer et de grande alose adultes de la Nivelle font l'objet d'études de la part de l'Aquapôle de l'INRA de St Pée sur Nivelle (UMR ECOBIOP, Ecologie Comportementale et Biologie des Populations de Poissons). Elles ont pour objectifs essentiels concernant le saumon :

- la quantification des rythmes de remontées de ces poissons,
- l'établissement de relations stock-recrutement (Dumas et Prouzet, 2002, 2003a et b), c'est-à-dire adultes-juvéniles,
- l'estimation des taux de retours du juvénile d'eau douce (tacons de l'année) à l'adulte anadrome (de retour en rivière) (trois années d'observations de retours d'adultes sont nécessaires pour une même classe de naissance de juvéniles dans le cas de la Nivelle),
- la compréhension du fonctionnement de la population de saumons au moyen de modèles du cycle biologique dans un but exploratoire (sensibilité aux fluctuations de certains facteurs naturels ou anthropiques) ou prévisionnel (production de juvéniles, retours d'adultes) (Charron, 1994 ; Dumas *et al.* 1995 ; Faivre *et al.* 1997 ; Brun 2011),
- l'alimentation de la base de données des rivières index du Conseil International pour l'Exploration de la Mer qui sert à ce dernier pour évaluer l'état de la ressource saumon atlantique à l'échelle de son aire de répartition et pour formuler des avis scientifiques pour la régulation de l'exploitation par la pêche sur stocks mélangés (principalement au Groenland et aux Iles Féroés),
- l'alimentation de la base de données de l'ORE DiaFC qui associent sur des recueils simultanés de données la Nivelle au Pays Basque, le Scorff en Bretagne et l'Oir en Normandie.

Le recueil de ces renseignements est effectué sur une période suffisamment longue (suivi de plusieurs classes de naissance) pour intégrer les fluctuations interannuelles. Dumas et Prouzet, (2002, 2003a et b) ont effectué une synthèse des caractéristiques démographiques et de la dynamique de cette population, portant sur les cohortes 1991 à 2002.

Concernant les truites de mer et les aloses, les objectifs restent modestes et se bornent à quantifier les rythmes de remontées.

Ce programme se déroule grâce à un large partenariat qui lie, dans le cadre d'une convention, l'INRA avec l'association MIGRADOUR, la Fédération pour la Pêche et la Protection des Milieux Aquatiques des Pyrénées Atlantiques (FDPPMA64), l'AAPPMA de la Nivelle, l'Office National de l'Eau et des Milieux Aquatiques (ONEMA) et l'Agglomération sud Pays Basque. L'INRA en association avec les AAPPMA de la Nivelle et de la Nive, mandatées par MIGRADOUR, assurent la collecte des données aux deux installations de piégeage à Uxondoa et à Olha. La FDPPMA64 apporte son concours principalement sous forme de participation en personnel aux opérations d'entretien des installations ainsi qu'au contrôle des frayères (A. Gonçalves). L'Agence de l'Eau Adour-Garonne, l'Union Européenne et la Fédération Nationale de Pêche apportent un soutien financier.

2 - <u>SITUATION GEOGRAPHIQUE</u>, <u>MATERIEL ET METHODE</u>

2.1 Le cours d'eau

Petit fleuve côtier de 39 km de long, la Nivelle prend sa source en Espagne et se jette dans le Golfe de Gascogne à Saint-Jean-de- Luz (Fig. 1). Son bassin versant de 238 km² et d'une altitude maximale de 932 m présente une grande variété géologique où dominent des formations marnocalcaire (flysch) ; il est essentiellement agro-pastoral avec des surfaces importantes de landes sur les reliefs (plus de 50 % de la surface totale du bassin). Son eau, neutre à légèrement alcaline et souvent troublée par les pluies, demeure de bonne qualité jusqu'à St Pée sur Nivelle ; elle se dégrade en aval et reste douteuse jusqu'à l'estuaire (Dumas et Haury, 1995). Son débit annuel moyen est de 4.95 m³/s à Cherchebruit (moyenne 1969-2013, Banque hydro).

Les migrateurs (saumons, truites de mer et grandes aloses) accèdent aux 18 premiers kilomètres de la Nivelle en eau douce et à 4,7 km de l'affluent principal, le Lurgorrieta. Les surfaces de production de jeunes saumons totalisent 46 181 m² pour une surface totale en eau de 321 000 m². Ce cours d'eau est équipé de deux passes à poissons pourvues de pièges de contrôle des remontées : Uxondoa en basse Nivelle (depuis 1984) et Olha à la transition de la basse et haute Nivelle (depuis 1992). De 1986 à 1990, les meilleures zones de production potentielle de juvéniles inaccessibles aux géniteurs et situées en amont d'Olha, étaient ensemencées en alevins de saumons (tableau 9), puis directement repeuplées avec des adultes sur le point de se reproduire fin 1990 et fin 1991. Depuis, la population de saumons s'auto-entretient.

2.2 Recueil des données

Le recueil des données est effectué principalement à la station de contrôle d'Uxondoa, équipée d'un piège d'interception des remontées, et située à 4,7 km en amont de la limite de salure des eaux. Il est complété par un contrôle des sujets transitant par la passe d'Olha (Fig. 1).

Les saumons et les truites de mer piégés sont anesthésiés à la benzocaïne. Leurs caractéristiques métriques et pondérales sont notées ainsi que des renseignements concernant leur sexage (longueur du maxillaire supérieur et distance narine-museau). Des écailles sont prélevées pour déterminer leur âge. Des observations sur un éventuel marquage lors de la phase juvénile, la couleur de la robe, la présence de poux de mer, de blessures, cicatrices ou pertes d'écailles, et l'état général sont également notées. Un prélèvement de tissu (petit morceau de nageoire pelvienne) est effectué sur les saumons et truites de mer pour caractériser génétiquement chaque individu. La présence de l'adipeuse chez les saumons est vérifiée, son absence caractérise un individu marqué provenant d'une autre rivière (parfois la Bidassoa ou l'Uruméa). Chez ces individus, la présence d'une micro-marque nasale est alors vérifiée. Si elle est détectée, le poisson est transporté sur la pisciculture de Mugaïre en Navarre pour y être stabulé, reproduit et sacrifié afin de récupérer la micro marque.

Les saumons échantillonnés et libérés en amont du piège d'Uxondoa subissent un double marquage pour identification ultérieure : un tatouage de taches au bleu alcyan dont les positions sur l'abdomen sont codées (Johnstone, 1981) ainsi qu'un marquage par PIT tag (marque IER, 11x2 mm) inséré sous la nageoire adipeuse. Tout comme les saumons, les truites de mer sont doublement marquées (bleu alcyan et PIT tag).

Les aloses, compte tenu de leur fragilité, sont simplement dénombrées.

Lors du passage à Olha, les poissons sont anesthésiés ; la taille permettant d'apprécier l'âge marin, le sexe et la présence d'une marque sont notés. Les saumons non contrôlés à Uxondoa (non marqués) font l'objet du même traitement qu'à Uxondoa mais sans effectuer la prise de poids.

Le contrôle des captures de saumons par pêche à la ligne (1) et des sujets trouvés morts (0) permet de compléter l'échantillon de cette espèce.

L'estimation totale des remontées de saumons, par type d'âge et selon le sexe, prend en compte les sujets transitant par le piège d'Uxondoa et Olha, les comptages des frayères, en particulier pour ceux qui demeurent en aval de la station de contrôle d'Uxondoa. L'ensemble des ces données permet d'estimer l'effectif de ceux ayant échappé au piégeage. Quoique reposant sur les mêmes principes généraux, la méthode d'estimation utilisée en 2012 diffère dans ces détails de mise en œuvre les années précédentes. Elle est décrite en détail par Brun (2011).

Le sexage des poissons échantillonnés avant septembre (où commence la période de différenciation anatomique évidente) et dont le sexe n'a pas été vérifié (autopsie ou vérification a posteriori chez les saumons marqués recapturés en automne) est obtenu au moyen d'une fonction factorielle discriminante. Cette fonction, qui tient compte de la longueur du maxillaire supérieur, de la longueur à la fourche (Maisse et Baglinière, 1986; Maisse *et al.*, 1988; Prévost *et al.*, 1991; Prévost *et al.*, 1992) et de la longueur narine-museau, a été ajustée sur un échantillon de 144 poissons dont le sexe a été vérifié entre 1990 et 1992.


2.3 Fonctionnement des passes et des pièges

Les pièges d'Uxondoa et d'Olha sont en fonctionnement continu du 06/03/2012 au 21/12/2012, à l'exception des périodes de fortes crues, de réparations et des jours de relèves certains weekends (environ un weekend sur deux ; tableau 11).

2.4 Estimation de la production de juvéniles 0⁺

Les effectifs et les densités moyennes de tacons 0⁺ en automne ont été estimés à partir du modèle de Brun et al. (2011) et des données de pêches électriques de 1985 à 2012 (Fig. 6 bis). Des modules complémentaires ont été ajoutés à ce modèle afin de distinguer les productions de différents types de tacons 0⁺ : ceux issus de la reproduction naturelle et ceux issus des lâchers de compensation (dans les zones accessibles aux géniteurs) ou de repeuplement (dans les zones non accessibles). Les modules ajoutés pour estimer les deux derniers types de production prennent en compte les effectifs relâchés, leur survie et les effets pouvant affecter cette survie : des effets de densité dépendance et/ou de zone et/ou d'habitat. Les effectifs totaux résultent de la somme des effectifs estimés sur les sites échantillonnés par enlèvements successifs (1985-2005) et des effectifs prédits par le modèle sur les autres sites (sites non échantillonnés et sites échantillonnés par pêche 5 minutes). Les valeurs du Tableau 9 correspondent à la moyenne de la distribution des estimations et à l'intervalle de crédibilité Bayésien à 90%.

La densité moyenne, par unité de surface en équivalent radier/rapide, est calculée via les densités estimées par le modèle sur les sites échantillonnés. Elle est pondérée par la surface des sites échantillonnés et par la surface des différentes zones de production, c'est-à-dire des différentes zones où l'on trouve des tacons 0⁺, qu'elles soient accessibles ou non :

- 1 : site échantillonné dans la rivière,
- z : zone. Seules les zones de production et échantillonnées sont prises en compte, c'est pourquoi la Très Haute Nivelle est exclue du calcul pour les années 1989 et 1990 alors que des lâchers de repeuplement ont eu lieu (pas de pêches électriques dans cette zone en 1989 et en 1990).
- t : année.
- d(l) : densité estimée sur le site l,
- S(l): surface du site l en m²,
- $\beta(h(1))$: facteur de conversion en équivalent radier/rapide ($\beta(h(1)) = 1$ pour l'habitat radier/rapide; $\beta(h(1)) = 0.21$ pour l'habitat plat (Brun et al., 2011). Les profonds n'étant pas utilisés par les tacons 0^+ , cet habitat n'est pas pris en compte),
- S_{rr}(z) : surface totale de la zone en équivalent radier/rapide.

Les résultats présentés dans ce rapport sont issus d'un échantillon de 10 000 valeurs prises dans la deuxième moitié des simulations (5 x 10⁵ itérations mais en retenant 1 valeur sur 50) générées par le logiciel OpenBUGS[©] (Version 3.1.1 rev 524). Les calculs complémentaires (densités moyennes et effectifs de juvéniles) ont été réalisés à partir du logiciel R[©] (Version 2.12.0).

3 - RESULTATS

3.1 Saumons

3.1.1 Effectifs piégés et échantillonnés à Uxondoa et Olha

L'échantillon contrôlé en 2012 est de 26 saumons piégés à Uxondoa¹. Cet échantillon est constitué de 22 sujets issus du stock de production naturelle de la Nivelle et de 4 saumons égarés de la Bidassoa (ou un autre système), identifiés par leur marque (ablation de l'adipeuse), qui proviennent de smolts d'élevage libérés dans ce cours d'eau (Tabl. 1). Un saumon est également trouvé mort en décembre en amont de la défeuilleuse d'Uxondoa. Un autre est capturé à la ligne en septembre en aval d'Uxondoa (mâle castillon de 656 mm pour 2350 g).

Au cours de la même période, 34 saumons franchissent la passe d'Olha ; 33 appartiennent au stock naturel de la Nivelle et un individu est un égaré (ablation d'adipeuse sans présence de micromarque nasale).

3.1.2 Rythmes de franchissement des passes

Le premier saumon est capturé à Uxondoa le 15/04/2012 et le dernier le 02/11/2012. Les poissons de 2 ans de mer, dits petits saumons, entrent en eau douce principalement d'avril à début-

Sont également comptabilisés, autres que saumons, truites de mer et grandes aloses :

⁻ au piège d'Uxondoa : 52 truites fario, 6 truites arc-en-ciel, 10 chevaines, 948 vandoises, 1 gardon, 4 goujons, 1 aloson, 12 vairons, 1 tacon, 1 loche franche.

⁻ au piège d'Olha : 15 truites fario, 2 aloses, 2 vandoises et 3 chevaines.

juin ; les castillons (de 1,5 ans de mer) transitent en juillet, puis principalement en octobre (Fig. 2 et 4 ; Tabl. 2).

A Olha, le premier saumon contrôlé dans ce piège se présente le 12/07/2012 et le dernier le 04/12/2012. La quasi-totalité (97 %) des poissons transitent par la passe à partir d'octobre (Fig. 3 et 5 ; Tabl. 3).

3.1.3 *Age et sexe.*

L'échantillon qui transite par Uxondoa est constitué de 61.5 % de castillons et de 34.6 % de saumons de deux ans de mer et un saumon de 3 hivers (égaré) soit 3.9 % (Tabl. 4).

La population naturelle de la Nivelle (45 poissons aux deux pièges) est principalement représentée par des castillons (37 individus soit 82.2 %) issus majoritairement de smolts d'un an (91.9 %); le reste de ses effectifs est constitué de 8 saumons de deux ans de mer (17.8 %), dont 62.5 % ont smoltifié à un an.

Les femelles représentent 44.4 % du stock local (35.1 % des castillons, 87.5 % des sujets de deux ans de mer).

Parmi les 5 saumons égarés originaires de la Bidassoa (10 % de l'échantillon total récolté) se trouvent 1 mâle castillon (2.1), 3 femelles de deux ans de mer (1.2) et 1 femelle de trois ans de mer (2.3).

3.1.4 Taille, poids et coefficient de condition

Chez les castillons originaires de la Nivelle dont on connaît les longueurs et les poids (Uxondoa), la longueur moyenne à la fourche est de 61.2 cm pour un poids de 2051 g, et chez les petits saumons, elle s'élève à 74.5 cm pour 4393 g (Tabl. 5). Les plusieurs hivers de mer égarés possèdent des caractéristiques métriques et pondérales supérieurs à ceux de la Nivelle (84.8 cm pour 6521 g). L'embonpoint des poissons autochtones est plus faible chez les castillons (0.894) dont beaucoup de sujets sont contrôlés en automne, que chez les saumons de deux ans de mer (1.041).

3.1.5 Estimation du stock de saumons et des taux de retour en Nivelle

L'effectif d'adultes le plus probable revenu en eau douce en 2012 est de 91 (intervalle à 95% de probabilité [64 à 226]) sujets.

Les saumons de la Nivelle appartiennent à trois classes de naissance dont les effectifs capturés aux deux pièges se répartissent ainsi (Tabl. 8, partie 3) : 3 sujets de la classe 2008 (de type 2.2) dont les retours sont considérés comme achevés, abstraction faite de très rares retours de type 2.3, 8 de la classe 2009 (3 du type 2.1+ et 5 du type 1.2) et 34 de la classe 2010 (type 1.1+), les retours de ces deux dernières cohortes n'étant pas achevés en 2012.

Les taux de retour en eau douce des tacons d'âge 0+ de chacune de ces classes, dont les nombres avaient été estimés en automne, s'élèvent à 2.91 % pour la classe 2008, 1.2 % au moins pour celle de 2009 et 0.47 % au minimum pour celle de 2010, constituée uniquement de sujets revenus aux âges 1.1+ (Tabl. 9).

3.1.6 Comptage des frayères, estimation des œufs déposés

Le contrôle des sites de frai et le comptage des "nids" creusés débute fin novembre pour cesser le 09/01/2013. La première frayère est signalée le 04/12/2012 et la dernière le 09/01/2013.

L'observation de frayères à permis de comptabiliser pour les tronçons suivant :

- aval Uxondoa : aucune frayère,
- Uxondoa Zaldubia : 5 frayères,
- Zaldubia Olha: 3 frayères,
- Olha Cherchebruit : aucune frayère,
- Cherchebruit Darguy : 31 frayères,
- Lurgorrieta: 18 frayères (dont une sur le Lizuniaga).

L'évaluation du nombre d'œufs déposés dans chaque tronçon du cours d'eau est déduite des effectifs de femelles par type d'âge estimés dans chaque tronçon de la Nivelle et du Lurgorrieta, estimations qui combinent les données de marquage-recapture obtenus par piégeage et les dénombrements de frayères.

Une dépose de 179 000 œufs est donc estimée dans l'ensemble du bassin accessible par les femelles, dont 60.3 % (108 000) en Basse Nivelle, 25.7 % (46 000) en Haute Nivelle et 14 % (25 000) dans le Lurgorrieta. La densité d'œufs rapportée aux surfaces de courants vifs est respectivement pour chacune de ces zones de 962, 163 et 363 œufs/100 m² de courants vifs.

3.2 Truites de mer

3.2.1 Effectifs piégés et échantillonnés à Uxondoa et Olha

L'échantillon contrôlé en 2012 est de 23 truites de mer piégées à Uxondoa (25 au total pour les deux pièges). Ce résultat place cette remontée dans la moyenne de ce que l'on peut observer sur la Nivelle depuis une vingtaine d'années.

Au cours de la même période, 3 truites de mer seulement franchissent la passe d'Olha. Résultat qu'il faut sans doute pondérer avec les ouvertures effectuées en 2012 sur les weekends notamment et les travaux sur la passe piège.

3.2.2 Rythmes de franchissement des passes

La première truite est capturée à Uxondoa le 24/05/2012 et la dernière le 20/12/2012 (Fig. 8 et 9a). Le calendrier de franchissement de la passe demeure le même que celui observé depuis 1984, soit mai, juin et juillet (Fig. 9b).

A Olha, les 3 truites de mer contrôlées, dont 1 déjà marquée à Uxondoa, se présentent du 24/06/2012 au 25/10/2012.

3.2.3 Taille, poids et coefficient de condition

La longueur moyenne à la fourche des 23 truites de mer dont on connait les longueurs, poids et coefficient de condition, est de 36.8 cm (écart-type = 6.78 cm) pour un poids moyen de 606 g (écart-type = 406 g). L'embonpoint de ces truites est normal (1.112, écart-type = 0.126). Ces

valeurs sont légèrement inférieures par rapport à celles observées depuis 1984 (en moyenne 40.9 cm pour 914 g et 1.10 de coefficient de condition).

3.3 Grandes Aloses

3.3.1 Effectifs à Uxondoa

Un total de 326 grandes aloses est dénombré à Uxondoa en 2012. Ce qui correspond à une abondance supérieure à ce site en comparaison de la moyenne observée (194) depuis 1984 (Fig. 10).

3.3.2 Rythmes de franchissement de la passe

La première alose est capturée le 28/04/2012 et la dernière le 06/07/2012. Les franchissements de la passe les plus nombreux cette année se concentrent sur le mois de mai, qui correspond à une augmentation rapide de la température de l'eau. Le calendrier des passages est celui observé habituellement à ce site (Fig. 12b).

Deux aloses sont vues à la passe d'Olha les 11 et 12 mai.

4 - DISCUSSION ET CONCLUSION

4.1 Saumons

Les effectifs de saumons dans la Nivelle restent en 2012 en dessous de la centaine d'individus, dans la gamme des effectifs estimés depuis 2003, mais très en dessous des effectifs de la moyenne observée de 1984 à 2002 (Fig. 6). La proportion de poissons capturés à Olha et déjà marqués à Uxondoa est inférieure aux années précédentes, en particulier pour les castillons. Ceci est la conséquence directe des interruptions de piégeage opérées les fins de semaine en 2012 contrairement aux années antérieures.

Le rythme de migration dans la passe d'Uxondoa des saumons de printemps est analogue à celui observé sur l'ensemble de la période 1984-2011. Il est par contre sensiblement différent pour les castillons dont le pic migratoire se produit en octobre. Se présentent ainsi au piège 3 individus seulement en juillet et 10 en octobre. 24 % des saumons (12/50) franchissent les passes avant le 1^{er} septembre (35^{ème} semaine ; Fig. 2a, 3 et 4).

A la fin de la période légale de pêche, prolongée par arrêté ministériel jusqu'au 15/10/2012, 77.8 % des poissons piégés à Uxondoa sont passés (21/27) alors que 44.4 % le sont jusqu'au 31 juillet (12/27) (date habituelle de fermeture dans les Pyrénées Atlantiques). Une seule capture de saumon à la ligne est déclarée en 2012 (mâle de 656 mm pour 2350g).

Les densités d'œufs déposés en Basse Nivelle (9.62 œufs/m² de radiers et de rapides) sont quasiment 6 fois plus élevées qu'en Haute Nivelle (1.63 œufs/m²) alors que la quantité de frayères observées en basse Nivelle (8 frayères) est 4 fois moins importante que sur la partie haute (31 frayères). Le Lurgorrieta accueille quant à lui une dépose d'œufs de 3.63 œufs/m² avec 18 frayères recensées. Cette apparente discordance entre décompte des frayères et répartition spatiale de la dépose d'œufs s'explique par la conjonction de différents facteurs :

(i) le nombre de frayères comptées par femelle est plus important sur la haute Nivelle et le Lurgorrieta que sur la basse Nivelle (Brun, 2011);

- (ii) les femelles présentes sur la haute Nivelle et le Lurgorrieta en 2012 sont pour l'essentiel des castillons dont la fécondité individuelle est notablement plus faible que celle des saumons de printemps qui constituent la majorité des femelles présentes sur la partie basse;
- (iii) l'interaction entre la dynamique de migration des saumons dans la Nivelle et les périodes d'interruption de piégeage pourrait avoir conduit à sous estimer l'efficacité du piégeage à Uxondoa en 2012, ce qui secondairement conduirait à surestimer l'effectif de saumon étant resté dans la partie de la Nivelle comprise entre les deux installations de piégeage ;
- (iv) des mortalités non observés ont pu intervenir avant la reproduction en basse Nivelle.

La Nivelle fait partie du réseau international des "Index Rivers" du Conseil International pour l'Exploration de la Mer (CIEM). C'est le seul cours d'eau d'Europe méridionale où des renseignements de ce niveau de précision sont obtenus sur une population de saumons, aussi bien aux stades adultes que juvéniles (relations stock-recrutement). Ces travaux sur les divers stades en eau douce de cette espèce, engagés sur un pas de temps de plusieurs décennies, mettent en évidence d'importantes fluctuations interannuelles des survies et notamment des taux de retour des juvéniles de production naturelle (Tabl. 9 et 10). Les taux de retour des classes 2008, 2009 et 2010 sont respectivement de 2.91, 1.2 et 0.47 %. Malgré des retours prévisibles pour les deux dernières classes, il est probable que les taux de retour finaux restent en dessous des valeurs moyennes normales observées dans les années 90.

4.2 Truites de mer

La population de truites de mer de la Nivelle (23 sujets à Uxondoa pour un total de 25 poissons différents comptabilisés), dominée par le type d'âge 0+ de mer (sujets ayant smoltifié après une ou deux années en eau douce et revenant deux à quatre mois après leur départ en mer), se maintient dans la moyenne des autres années observées (28 individus en moyenne à Uxondoa entre 1984 et 2012).

Deux individus sont des retours multiples (1 truite marquée en 2010, une seconde marquée en 2007 et déjà revenue en 2008 et 2009).

Cet écotype de truite commune (Baglinière, 1991), dont les juvéniles ne se distinguent pas de ceux des truites sédentaires ne peut procurer dans le cadre des études faites en Nivelle que des renseignements sur les stades sub-adultes (finnocks) et adultes. Pour une analyse plus précise il serait nécessaire d'effectuer une étude scalimétrique des différents types d'âges de rivière et de mer, et des rythmes de reproduction associés aux retours en eau douce, afin de les comparer aux populations des autres rivières, notamment de la même zone géographique (Darolles, 1997).

Ces poissons, en majorité des femelles estimées, ont une croissance supérieure à celle de leurs congénères sédentaires en eau douce. De ce point de vue, certaines années où les effectifs sont plus nombreux, ces femelles peuvent représenter un potentiel de reproduction conséquent (Euzenat *et al.*, 1991) pour un bassin versant comme celui de la Nivelle. Il conviendrait d'en tenir compte dans les mesures d'aménagement, et plus particulièrement de permettre l'accès de ces poissons aux zones de reproduction de la truite essentiellement situées dans les affluents et sous-affluents de ce système.

4.3 Grandes Aloses

Cette population semble stable depuis la création de la station de contrôle d'Uxondoa en 1984, mais les effectifs annuels contrôlés à Uxondoa sont très variables. Il est en effet difficile

d'apprécier l'abondance réelle du stock remonté en eau douce car une proportion variable, dépendante du débit moyen de la période de migration, reste et se reproduit dans le tronçon Ascain-Uxondoa en aval du site de contrôle (Goñi, 2002).

L'effectif piégé en 2012 (326 individus) est analogue à celui de 2011 (328 individus).

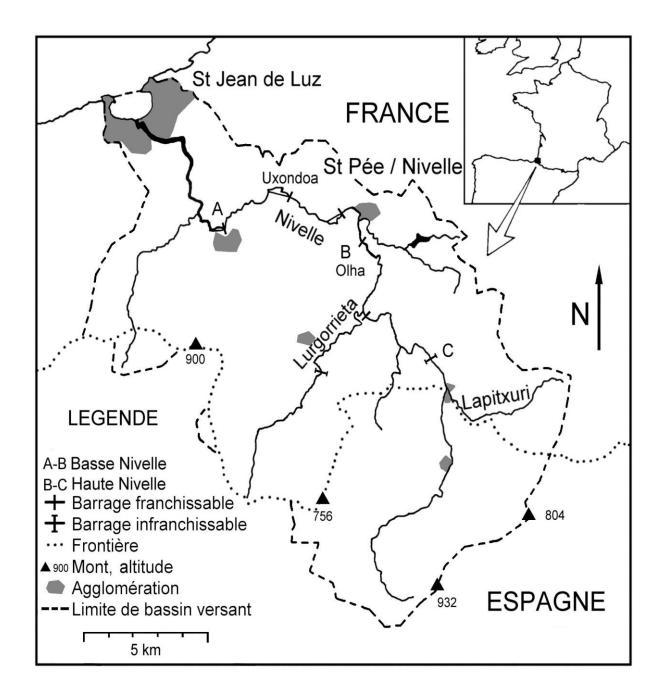
Les caractéristiques générales de la population de grandes aloses adultes de la Nivelle, étudiées sur un échantillon contrôlé entre 1984 et 1992 (Goñi, 2002) ne diffèrent pas de celles des autres populations sud-européennes (Mennesson-Boisneau, 2000). Les adultes de la Nivelle passent en moyenne 5 ans en mer (de 3 à 7 ans). Les femelles présentent une maturité plus tardive (âge moyen 5.3 ans) que celles des mâles (âge moyen 4.8 ans). L'âge et l'embonpoint moyens diminuent au cours de la saison de migration. Le taux d'itéroparité (plusieurs remontées de reproduction) est de 5.1 % et s'avère parmi les plus élevés connus pour le sud de l'Europe (Martin-Vandembulcke, 1999; Mennesson-Boisneau, 2000). Les mouvements importants ont essentiellement lieu à la faveur d'élévations de température de l'eau et de baisses de débit.

REMERCIEMENTS

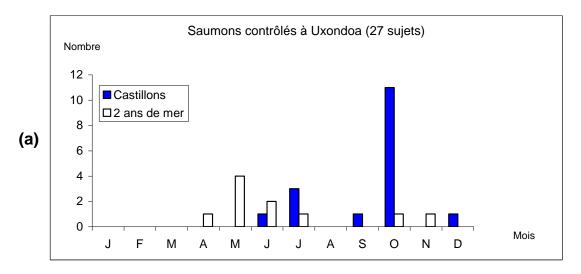
Nous tenons à remercier MM. André Dartau, Président de la Fédération des AAPPMA des Pyrénées-Atlantiques, Jacques Gjini, Président de MIGRADOUR, Olivier Briard, Président de l'AAPPMA de la Nivelle et leurs collaborateurs pour leur rôle très constructif joué lors de l'élaboration des protocoles d'études des migrateurs et de la gestion des passes d'Uxondoa et d'Olha, ainsi que David Barracou et Samuel Marty pour leur contribution très importante à l'élaboration des projets de maintenance des stations de la Nivelle et le traitement des données.

Nos sincères remerciements vont à Adrien Gonçalves de la garderie, à Didier Balesta, Julien Fargues, Julien Jaureguy et Jean-Marie Trounday de MIGRADOUR, pour leur participation très efficace aux opérations de piégeage, de contrôle des poissons et de contrôle de la reproduction.

Nous remercions également les différentes personnes des Services communs de l'INRA, plus particulièrement Olivier Debétencourt, Vincent Guy et Ludovic Péron, qui contribuent avec rigueur aux travaux, à l'entretien et au bon fonctionnement technique des stations de piégeage de la Nivelle.


BIBLIOGRAPHIE

- **Chadwick**, **1985**. Fundamental research problems in the management of Atlantic salmon, *Salmo salar* L., in Atlantic Canada. *J. Fish. Biol.*, 27 (suppl. A), 9-25.
- Charron M.H., 1994. Modélisation stochastique du cycle biologique des Salmonidés migrateurs. Application à la modélisation du cycle du saumon atlantique de la Nivelle et de l'Adour. Dipl. étud. Sup. spéc., Méthodes informatiques et modèles mathématiques, Univ. Paul Sabatier, Toulouse, 86 p. (Unité de Biométrie et d'Intelligence Artificielle, INRA, Toulouse; Station d'Hydrobiologie, INRA, St Pée sur Nivelle).
- **Baglinière J.L., 1991**. La truite commune (*Salmo trutta* L.), son origine, son aire de répartition, ses intérêts économique et scientifique. *In* : *La truite* : *biologie et écologie* (Baglinière J.L., Maisse G., Eds), 11-22. INRA Editions, Paris.


- Brun M., 2011. Aide à la décision pour la conservation des populations de saumon atlantique. Thèse doctorat, Université de Pau et des Pays de l'Adour, École doctorale Sciences exactes et leurs applications, 205 p. + annexes.
- Brun, M., Abraham, C., Jarry, M., Dumas, J., Lange, F., Prévost, E., 2011. Estimating an homogeneous series of a population abundance indicator despite changes in data collection procedure: A hierarchical Bayesian modelling approach. *Ecol. Model.*, 222, 1069-1079.
- **Darolles V., 1997**. Etude de la truite de mer (Salmo trutta L.) sur les bassins des Gaves et des Nives. Dipl. étud. Sup. spéc., Dynamique des écosystèmes aquatiques, Univ.de Pau et des Pays de l'Adour, Anglet, 78 p.
- **Dumas J., 1985 à 2005**. La population de saumons adultes de la Nivelle en 1984,...,2004. *Station d'Hydrobiologie, INRA, St-Pée-sur-Nivelle*.
- **Dumas J., Haury J., 1995**. Une rivière du piémont pyrénéen : La Nivelle (Pays Basque). *Acta biol. mont.*, 11, 113-146.
- **Dumas J., Lange F., 2006**. La population de saumons, truites de mer et grandes aloses de la Nivelle en 2005. *Station d'Hydrobiologie, INRA, St-Pée-sur-Nivelle*, 29 p.
- **Dumas J., Lange F., 2007**. La population de saumons, truites de mer et grandes aloses de la Nivelle en 2006. *Station d'Hydrobiologie, INRA, St-Pée-sur-Nivelle*, 29 p.
- **Dumas J., Lange F., 2008**. La population de saumons, truites de mer et grandes aloses de la Nivelle en 2007. *Station d'Hydrobiologie, INRA, St-Pée-sur-Nivelle*, 29 p.
- **Dumas J., Prouzet P., 2002.** Variabilité des paramètres démographiques et dynamique d'une population de Saumon atlantique, *Salmo salar* L., du sud-ouest de la France. *Station d'Hydrobiologie, INRA, St-Pée-sur-Nivelle, 25* p.
- **Dumas J., Prouzet P., 2003a**. Variability of demographic parameters and population dynamics of Atlantic salmon (*Salmo salar* L.) in a southwest French river. *ICES Journal of Marine Science*, 60, 356-370.
- **Dumas J., Prouzet P., 2003b**. Démographie et modélisation du fonctionnement d'une population de saumon Atlantique du sud de l'aire de répartition. *V Jornadas del Salmon Atlantico en la Peninsula Iberica*, San Sebastian, Espana, 22-24 octobre 2003, 12p.
- **Dumas J., Faivre R., Charron M.H., Badia J., Davaine P., Prouzet P., 1995**. Modélisation stochastique du cycle biologique du Saumon atlantique (*Salmo salar* L.): bases biologique, implémentation informatique et interprétation. *Comm., 2ème Forum Halieumétrique, 26-28 juin 1995, Nantes*, 6 p.
- **Egglishaw H.R., Gardiner W.R., Shackley P.E., Struthers G., 1984**. Principles and practice of stocking streams with salmon eggs and fry. *Scottish Fisheries Information Pamphlet*, Number 10, 22 p.

- Elson P.F., 1957. Number of salmon needed to maintain stocks. Can.J.Fish.Cult., 21, 18-23.
- **Euzenat G., Fournel F., Richard A., 1991**. La truite de mer (*Salmo salar* L.) en Normandie / Picardie. *In*: *La truite*: *biologie et écologie* (Baglinière J.L., Maisse G., Eds), 183-213. INRA Editions, Paris.
- **Faivre R., Dumas J., Charron M.H., Badia J., Prouzet P., 1997**. River basin management using a stochastic model of the salmon life cycle. *In : Congress on Modeling and Simulation, MODSIM'97*, 1536-1541, Hobart, Tasmania, Australia, December 8-11, 1997.
- Goñi N., 2002. Caractéristiques biologiques des grandes aloses (*Alosa alosa* L.) adultes de la Nivelle : démographie, croissance, migration. *Stage de Maîtrise, Biologie des Populations et dfes Ecosystèmes (mention Environnement), Univ.de Pau et des Pays de l'Adour, Anglet,* 31 p.
- **Johnstone R., 1981**. Dye marking. Colour guide to growth performance. Fish Farmer, 4, 24-25.
- **Kennedy G.J.A., 1988**. Stock enhancement of Atlantic salmon (*Salmo salar L.*). In Mills D., Piggins D., Ed, 345-372, Atlantic salmon. Planning for the future. *Proc. 3rd Internat. Atl. Salm. Symp., Biarritz, France*, 21-23 oct. 1986.
- **Lange F., Prevost E., 2009**. La population de saumons, truites de mer et grandes aloses de la Nivelle en 2008. *Station d'Hydrobiologie, INRA, St-Pée-sur-Nivelle*, 29 p.
- **Lange F., Prevost E., Brun M., 2010**. Les populations de saumons, truites de mer et grandes aloses de la Nivelle en 2009. *Station d'Hydrobiologie, INRA, St-Pée-sur-Nivelle*, 31 p.
- Lange F., Prevost E., Brun M., 2011. Les populations de saumons, truites de mer et grandes aloses de la Nivelle en 2010. *Station d'Hydrobiologie, INRA, St-Pée-sur-Nivelle*, 31 p.
- **Lange F., Prevost E., 2012**. Les populations de saumons, truites de mer et grandes aloses de la Nivelle en 2011. *Station d'Hydrobiologie, INRA, St-Pée-sur-Nivelle*, 31 p.
- **Maisse G., Baglinière J.L., 1986.** Le sexage morphologique du Saumon atlantique (*Salmo salar*). *Bull. Fr. Pêche Piscic.*, 300, 13-18.
- Maisse G., Baglinière J.L., Landry G., Caron F., Rouleau A., 1988. Identification externe du sexe chez le Saumon atlantique (*Salmo salar* L.). *Can. J. Zool.*, 66, 2312-2315.
- Martin-Vandembulcke D., 1999. Dynamique de population de la grande alose (*Alosa alosa* L. 1758) dans le bassin versant Gironde-Garonne-Dordogne (France) : analyse et prévision par modélisation. *Thèse de Doctorat, Institut National Polytechnique et Ecole Nationale Supérieure d'Agronomie de Toulouse*, 114p.
- Menesson-Boisneau C., Aprahamian M.W., Sabatié M.R., Cassou-Lens J.J., 2000. Caractéristiques des adultes. In: Les aloses (Alosa alosa et Alosa fallax spp.). Ecobiologie et

- variabilité des populations (Baglinière J.L., Elie P., Eds), 33-54. CEMAGREF et INRA Editions, Paris.
- **Prévost E., Vauclin V., Baglinière J.L., Brana-Vigil F., Nicieza A.G., 1991**. Application d'une méthode de détermination du sexe chez le Saumon atlantique (*Salmo salar*) dans les rivières des Asturies (Espagne). *Bull. Fr. Pêche Piscic.*, 323, 149-159.
- **Prévost E., Chaput G., Mullins C.C., 1992.** Essai d'utilisation du dimorphisme sexuel de la mâchoire supérieure pour déterminer le sexe des saumons (*Salmo salar*) capturés en milieu estuarien ou côtier. *ICES, Ana. Cata. Fish. Comm.* CM 1992/M:13, 7 p.
- **Prouzet P., Martinet J.P., Cuende F.X., 1997**. Rapport sur la pêche des marins pêcheurs dans l'estuaire de l'Adour en 1996. Rapport IFREMER/DRV/RH/INRA St-Pée, *Station d'Hydrobiologie, INRA, St-Pée-sur-Nivelle, 27* p.

Figure 1. La Nivelle et le domaine du saumon. Aval de A : Estuaire ; A-B : Basse Nivelle ; B-C : Haute Nivelle ; Lurgorrieta

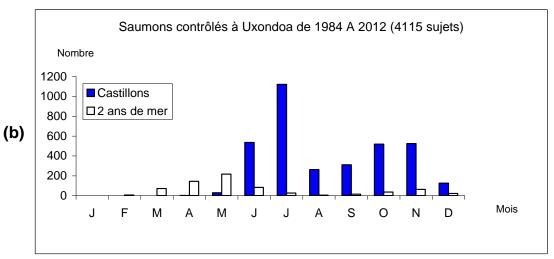


Figure 2 - Fréquences mensuelles des captures de saumons vierges au piège de la passe à poissons d'Uxondoa. (a) - en 2012 ; (b) - de 1984 à 2012

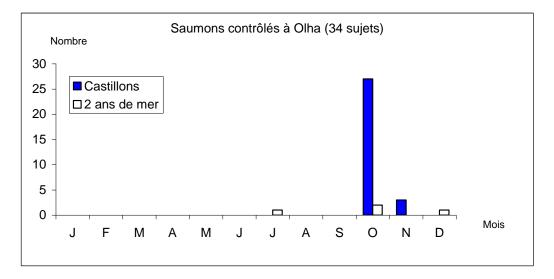


Figure 3 - Fréquences mensuelles des captures de saumons vierges dans la passe à poissons d'Olha en 2012

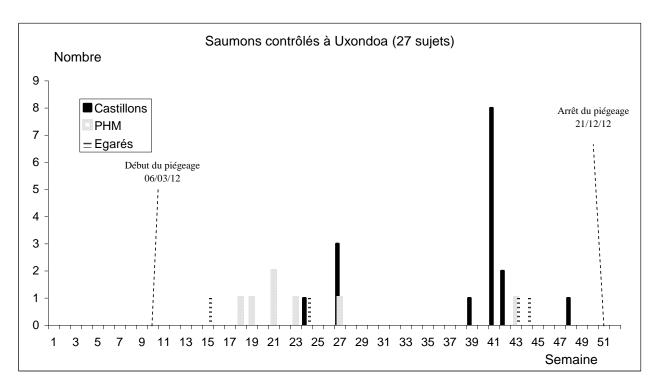


Figure 4 - Fréquences hebdomadaires (semaines conventionnelles) de captures de saumons de la Nivelle en 2012 au piège d'Uxondoa.

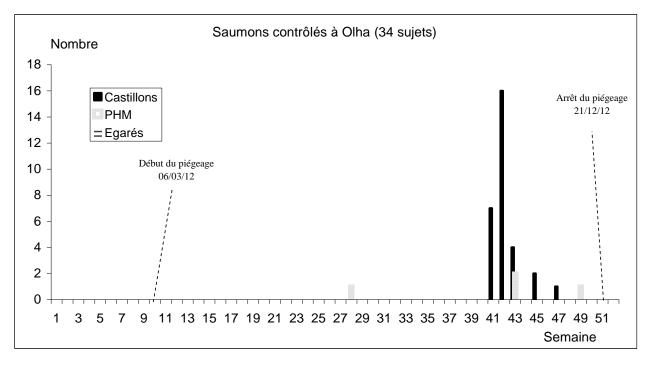


Figure 5 - Fréquences hebdomadaires (semaines conventionnelles) de captures de saumons de la Nivelle en 2012 au piège d'Olha.

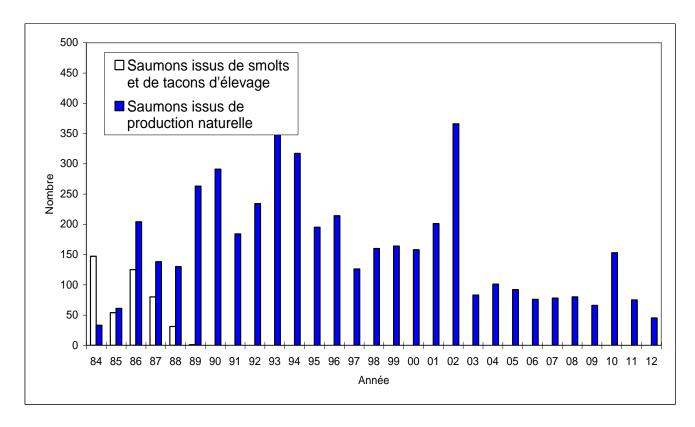


Figure 6 - Evolution de la population de saumons adultes de la Nivelle de 1984 à 2012 (2 èmes retours inclus).

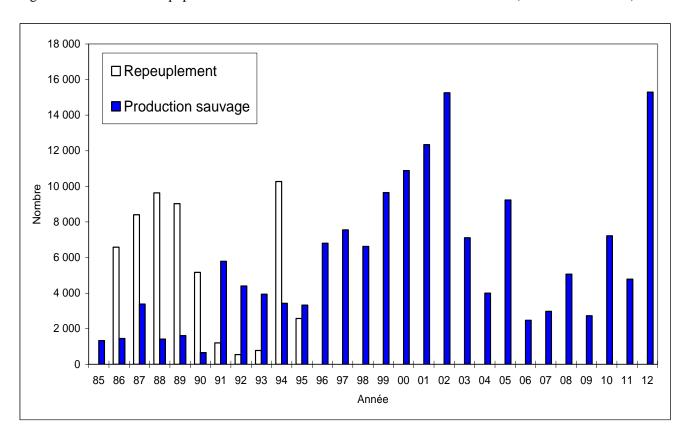


Figure 6 bis - Estimation de la production de juvéniles O+ de 1985 à 2012.

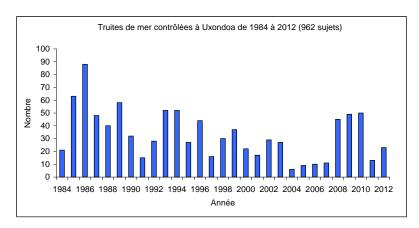


Figure 7 - Evolution de la population de truites de mer de la Nivelle de 1984 à 2012 au piège d'Uxondoa.

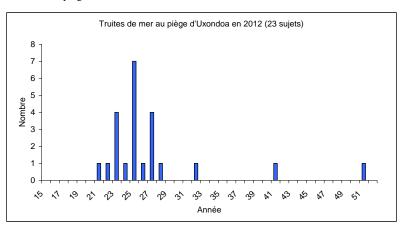
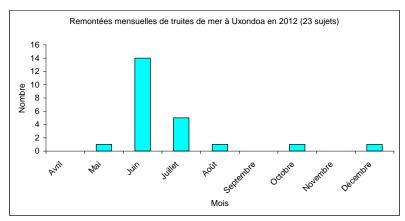



Figure 8 - Fréquences hebdomadaires (semaines conventionnelles) de captures de truites de mer de la Nivelle en 2012 au piège d'Uxondoa.

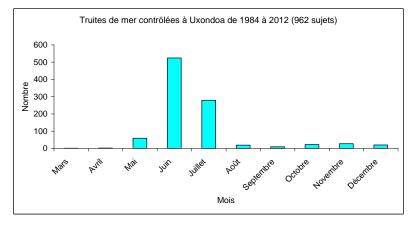


Figure 9 - Fréquences mensuelles des captures de truites de mer au piège (a), 2012 ; (b), 1984 à 2012

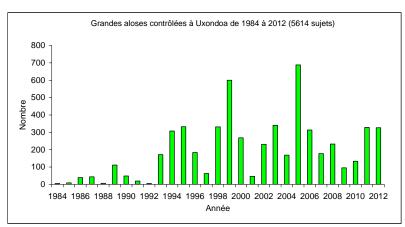


Figure 10 - Evolution de la population de grandes aloses de la Nivelle de 1984 à 2012 au piège d'Uxondoa.

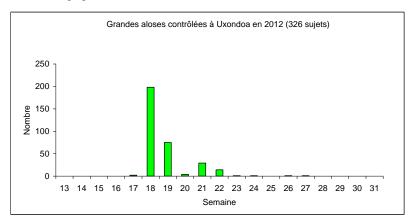


Figure 11 - Fréquences hebdomadaires (semaines conventionnelles) de captures de grandes aloses de la Nivelle en 2012 au piège d'Uxondoa.

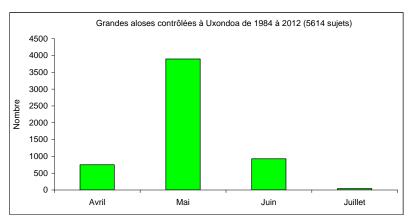


Figure 12 - Fréquences mensuelles des captures de grandes aloses au piège de la passe à poissons d'Uxondoa : (a), en 2012 ; (b), de 1984 à 2012

Tableau 1 - Nombre (N) et pourcentage (P en %) de saumons adultes sauvages et d'élevage du stock de la Nivelle contrôlés de 1977 à 2012 (essentiellement par pêches électriques d'automne et accessoirement par déclaration des captures de 1977 à 1983, puis par piégeage de mars à janvier à la passe d'Uxondoa de 1984 à 2012).

					Lie	u de con	trôle et o	rigine				
Année				Niv	elle				Bida	issoa	Mer	Grand total
	Sau	vage	Ele	vage	Ega	arés	То	tal	Sauvage	Elevage	Elevage	
	N	P	N	P	N	P	N	P	N	N	N	N
1977-1983	190	52,1	175	47,9		0	365	100		5	9	379
1984-1990	876	71,2	354	28,8		0	1230	100	5	12	1	1248
1991	151	100,0		0,0		0	151	100				151
1992	209	97,2		0,0	6 ^a	2,8	215	100				215
1993	369	100,0		0,0		0	369	100				369
1994	263	97,4		0,0	7 ^a	2,6	270	100				270
1995	161	87,0		0,0	24 ^b	13,0	185	100				185
1996	180	93,8		0,0	12 ^b	6,3	192	100				192
1997	110	99,1		0,0	1 °	0,9	111	100				111
1998	137	94,5		0,0	8 a	5,5	145	100				145
1999	135	97,8		0,0	3 ^a	2,2	138	100				138
2000	128	97,0		0,0	4 ^a	3,0	132	100				132
2001	165	98,8		0,0	2 a	1,2	167	100				167
2002	280	97,9		0,0	6 ^a	2,1	286	100				286
2003	70	94,6		0,0	4 ^a	5,4	74	100				74
2004	79	96,3		0,0	3 ^a	3,7	82	100				82
2005	69	94,5		0,0	4 ^a	5,5	73	100				73
2006	47	94,0		0,0	3 ^a	6,0	50	100				50
2007	53	91,4		0,0	5 a	8,6	58	100				58
2008	56	91,8		0,0	5 a	8,2	61	100				61
2009	51	98,1		0,0	1 ^a	1,9	52	100				52
2010	125	94,7		0,0	7 ^a	5,3	132	100				132
2011	61	88,4		0,0	8 ^a	11,5	69	100				69
2012	23	85,2		0,0	4 ^a	14,8	27	100				27
1977-20112	3988	86,1	529	11,4	117	2,5	4634	100	5	17	10	4666

⁽a) Saumons d'élevage de la Bidassoa égarés dans la Nivelle (élevés jusqu'au stade smolt à la pisciculture de Mugaïre et libérés dans la Bidassoa).

⁽b) Saumons d'élevage de la Bidassoa égarés dans la Nivelle (élevés jusqu'au stade smolt à la pisciculture de Mugaïre et libérés dans la Bidassoa et l'Urumea).

⁽c) Saumon sauvage du Gave de Pau égaré dans la Nivelle (marqué par radiomarque dans le Gave en Juillet 1997 et recapturé dans la Nivelle en novembre 1997).

Tableau 2 - Nombre mensuel de saumons de différents âges marins et origines franchissant la passe à poissons d'Uxondoa en 2012 (totalité des saumons contrôlés).

				A	ge mari	n						
Mois	F	roduction	n naturel	le	Egarés				Ensemble			
		l er retou	r	2 ème					l er retou	r	2 ème	
	1	2	Total	retour	1	2	Total	1	2	Total	retour	
Janvier												
Février												
Mars												
Avril						1			1	1		
Mai		4							4	4		
Juin	1	1				1		1	2	3		
Juillet	3	1						3	1	4		
Août												
Septembre	1							1		1		
Octobre	10	1			1			11	1	12		
Novembre						1			1	1		
Décembre	1							1		1		
Total	16	7	23	0	1	3	4	17	10	27	0	

Tableau 3 - Nombre mensuel de saumons de différents âges marins et origines franchissant la passe à poissons d'Olha en 2012 (totalité des saumons contrôlés).

				A	Age mari	n					
Mois	F	Production	n naturel	le		Egarés			Ens	emble	
		l er retou	r	2 ème			1 er retour			2 ème	
	1	2	Total	retour	1	2	Total	1	2	Total	retour
Janvier											
Février											
Mars											
Avril											
Mai											
Juin											
Juillet		1							1		
Août											
Septembre											
Octobre	27	2						27	2		
Novembre	3							3			
Décembre						1			1		
Total	30	3	33	0	0	1	1	30	4	0	0

Tableau 4 - Effectifs (N) et pourcentages (P en %) de saumons adultes de la Nivelle échantillonnés en 2012. Deux origines sont identifiées: production naturelle de la Nivelle et égarés d'élevage de la Bidassoa. F = femelle; M = mâle.

Age de mer (années) Age d'eau douce (années) Sexe (années) Production naturelle Egarés Ensemble 1 F 4 26,7 4 26,7 1 M 11 73,3 11 73,3 1 Total 15 100 15 100 1 2 M 1 100,0 0 0,0 0,0 0,0 0,0 0,0 100,0 1 100,0 1 100,0 1 100,0 1 100,0 1 100,0 1 100,0 1 75,0 1 100,0 1
(années) N P N P N P N P N P
F 4 26,7 11 73,3 11 73,3 11 73,3 1 100,0 1 100,0 1 100,0 1 100,0 1 1 1 1
1 M 11 73,3 Total 15 100 F 0 0,0 0 0 0,0 1 1 100,0 1 100,0 Total 1 100 1 100 F 4 26,7 0 0,0 4 25,0 Total 15 100 1 100,0 12 75,0 Total 15 100 1 100 16 100 F 4 80,0 2 100,0 6 85,7
1 M 11 73,3 Total 15 100 F 0 0,0 0 0 0,0 1 1 100,0 1 100,0 Total 1 100 1 100 F 4 26,7 0 0,0 4 25,0 Total 15 100 1 100,0 12 75,0 Total 15 100 1 100 16 100 F 4 80,0 2 100,0 6 85,7
Total 15 100 15 100 F
F
F
1 2 M 1 100,0 1 100,0 1 100,0 1 100,0 1 100,0 1 100 1 100 1 100 1 1 100 1 1 100 1 1 100 1 1 100,0 1 1 1 1
1 2 M 1 100,0 1 100,0 1 100,0 1 100,0 1 100,0 1 100 1 100 1 100 1 1 100 1 1 100 1 1 100 1 1 100,0 1 1 1 1
F 4 26,7 0 0,0 4 25,0 M 11 73,3 1 100,0 12 75,0 Total 15 100 1 100 16 100 F 4 80,0 2 100,0 6 85,7
F 4 26,7 0 0,0 4 25,0 M 11 73,3 1 100,0 12 75,0 Total 15 100 1 100 16 100 F 4 80,0 2 100,0 6 85,7
1 et 2 M 11 73,3 1 100,0 12 75,0 Total 15 100 1 100 16 100 F 4 80,0 2 100,0 6 85,7
1 et 2 M 11 73,3 1 100,0 12 75,0 Total 15 100 1 100 16 100 F 4 80,0 2 100,0 6 85,7
Total 15 100 1 100 16 100 F 4 80,0 2 100,0 6 85,7
F 4 80,0 2 100,0 6 85,7
F 4 80,0 2 100,0 6 85,7
1 1 1 1
Total 5 100 2 100 7 100
F 2 100,0 2 100,0
2 M 0 0,0 0 0,0
Total 2 100 2 100
F 6 85,7 2 100,0 8 88,9
1 et 2 M 1 14,3 0 0,0 1 11,1
Total 7 100 2 100 9 100
F 10 45,5 2 66,7 12 48,0
1 et 2
Taril 22 100 2 100 2 100 25 100
Total 22 100 3 100 25 100
F 1 100,0 1 100,6
Grands saumons M 0 0,0 0 0,0
Total 1 100 1 100
F Seime Comment of the Comment of th
2 ème retour M
Total
Tous âges Total 22 4 26

Tableau 5 - Nombre, longueur à la fourche, poids et coefficient de condition des saumons adultes de la Nivelle à Uxondoa en 2012 (toutes périodes confondues) selon l'âge marin, le sexe et l'origine. F= femelle; M= mâle; s= écart-type.

			Origine et sexe									
Age de mer (années)	Paramètres	P	roduction naturell	e		Egarés						
		F	M	Total	F	M	Total					
	Nombre	4	11	15	0	1	1					
1	Longueur à la fourche (cm)	59.8 s = 2.6	61,7 s = 2,96	61,2 s = 2,92	0,0 s = 0,0	545,0 s = 0,0	545,0 s = 0,0					
(castillon)	Poids (g)	1994 s = 274	2072 $s = 249$	2051 s = 249	$0 \\ s = 0,0$	1280 s = 0,0	1280 s = 0,0					
	Coeff.de condition (k)	0,932 s = $0,082$	0.88 s = 0.041	0.894 s = 0.057	0.0 s = 0.0	0.8 s = 0.0	0.8 s = 0.0					
	Nombre	6	1	7	2	0	2					
2	Longueur à la fourche (cm)	75,5 $s = 3,46$	68,5 s = 0,0	74,5 $s = 4,12$	83.8 $s = 16.48$	0.0 s = 0.0	83.8 $s = 16.48$					
(petit saumon)	Poids (g)	4628 s = 1038	2985 s = 0,0	4393 s = 1132	6574 $s = 2339$	$0 \\ s = 0,0$	6574 $s = 2339$					
	Coeff.de condition (k)	$ \begin{array}{c} 1,060 \\ s = 0,118 \end{array} $	0,929 s = 0,0	$ \begin{array}{c} 1,041 \\ s = 0,119 \end{array} $	$ \begin{array}{c} 1,1 \\ s = 0,258 \end{array} $	0.0 s = 0.0	1,1 $s = 0,258$					
	Nombre	0	0	0	1	0	1					
2	Longueur à la fourche (cm)	0.0 s = 0.0	0.0 s = 0.0	0.0 s = 0.0	87.0 $s = 0.0$	0.0 s = 0.0	87.0 $s = 0.0$					
3 (grand saumon)	Poids (g)	$0 \\ s = 0.0$	$0 \\ s = 0.0$	$0 \\ s = 0,0$	6415 s = 0,0	$0 \\ s = 0,0$	6415 s = 0,0					
	Coeff.de condition (k)	0.0 s = 0.0	0.0 s = 0.0	0.0 s = 0.0	1,0 s = 0,0	0.0 s = 0.0	1,0 s = 0,0					
	Nombre	0	0	0	0	0	0					
2 ^{ème} retour	Longueur à la fourche (cm)	0.0 s = 0.0	0.0 s = 0.0	0,0 s = 0,0	0,0 s = 0,0	0,0 s = 0,0	0.0 s = 0.0					
2 retour	Poids (g)	$0 \\ s = 0,0$	$0 \\ s = 0.0$	$0 \\ s = 0,0$	$0 \\ s = 0,0$	$0 \\ s = 0,0$	$0 \\ s = 0,0$					
	Coeff.de condition (k)	0.0 s = 0.0	0.0 s = 0.0	0.0 s = 0.0	0.0 s = 0.0	0.0 s = 0.0	0.0 s = 0.0					

Tableau 6 - Bilan des observations de frai du Saumon atlantique en Nivelle pour la période du 04/12/2012 au 09/01/2013

Grande zone	Tronçon	N° de tronçon	Nombre de nids observés
	Ascain - Uxondoa	1	0
Basse	Uxondoa - Zaldubia	2	5
Nivelle	Zaldubia - Olha	3	3
	Total	1 à 3	8
	Olha - Cherchebruit	4	0
Haut	Cherchebruit - Urrutienea	5	31
Bassin	Lurgorrieta	7	18
	Total	4, 5 et 7	49
Ensemble des zones	Tous tronçons		57

Tableau 8 (Partie 1) - Répartition des retours de saumons vierges en Nivelle (nombres estimés arrondis) selon les années de naissances et les années de remontées (saumons de production naturelle). Entre parenthèses : âge d'eau douce et âge marin.

Estimation nouveau modèle

				Estimat	tion nouveau	modele					
	Année de naissance (classe)	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989
	Nombre de tacons 0+ d'automne						1329	1450	3383	1418	1608
	Retours d'adultes de la classe			35	80	214	133	176	263	351	117
Année de retour	Nombre										
1984	33	4 (2.2)	16	13 (1.1)							
1904	(27 contrôlés)		5 (2.1+) 11 (1.2)								
1985	61		1 (1.3)	12	48 (1.1+)						
1983	(52 contrôlés)			7 (2.1+) 5 (1.2)							
1986	203			10 (2.2)	30	163 (1.1+)					
1980	(158 contrôlés)				16 (2.1+) 14 (1.2)						
1987	138				2 (2.2)	45	91 (1.1+)				
1987	(120 contrôlés)					22 (2.1+) 23 (1.2)					
1988	130					6 (2.2)	35	89 (1.1+)			
1988	(83 contrôlés)						10 (2.1+) 25 (1.2)				
1989	262						7 (2.2)	80	175 (1.1+)		
1707	(199 contrôlés)							34 (2.1+) 46 (1.2)			
1990	291							7 (2.2)	69	215 (1.1+)	
1990	(235 contrôlés)								37 (2.1+) 32 (1.2)		
1001	180 ^b								19	121	40 (1.1+)
1991	(147 contrôlés) ^b								1 (3.1+) 18 (2.2)	98 (2.1+) 23 (1.2)	

⁽a) Retours non achevés;

⁽b) Saumons de 2^{ème} remontée déjà revenus les années précédentes ainsi que les sujets égarés d'autres cours d'eau, exclus du calcul.

Tableau 8 (Partie 2) - Répartition des retours de saumons vierges en Nivelle (nombres estimés arrondis) selon les années de naissances et les années de remontées (saumons de production naturelle). Entre parenthèses : âge d'eau douce et âge marin.

					Estimat	ion nouveau	modèle				
	Année de naissance (classe)	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997
	Nombre de										
	tacons 0+	1418	1608	659	5788	4396	3937	3429	3326	6803	7553
	d'automne										
	Retours d'adultes de la classe	351	117	231	472	288	190	184	124	172	157
Année											
de	Nombre										
retour											
	291	215 (1.1+)									
1990											
	(235 contrôlés)										
	180 ^b	121	40 (1.1+)								
1991											
	(147 contrôlés) ^b	98 (2.1+)									
		23 (1.2)									
	227 ^b	15 (2.2)	72	140 (1.1+)							
1992	227	13 (2.2)	12	140 (1.11)							
	(203 contrôlés) ^b		49 (2.1+)								
	(======================================		23 (1.2)								
	472			00	270 (1.1.)						
1993	472		5 (2.2)	89	378 (1.1+)						
1773	(277 contrôlés)			58 (2.1+)							
	(=11 = 1111 = 111)			31 (1.2)							
	b.										
1004	316 ^b			2 (2.2)	88	226 (1.1+)					
1994	(202+				40 (2.1.)						
	(203 contrôlés) ^b				48 (2.1+) 40 (1.2)						
					40 (1.2)						
	191 ^b				6 (2.2)	55	130 (1.1+)				
1995											
	(158 contrôlés) ^b					24 (2.1+)					
						31 (1.2)					
	213 ^b					7	57	149 (1.1+)			
1996							-,	(1111)			
	(179 contrôlés) ^b					6 (2.2)	22 (2.1+)				
						1 (1.3)	35 (1.2)				
	126 ^b						2(2.2)	33	91 (1.1+)		
1997	120						2(2.2)	33	91 (1.1+)		
1,,,,	(110 contrôlés) ^b							24(2.1+)			
	(110 controles)							9(1.2)			
	L										
1000	160 ^b						1 (2.3)	2 (2.2)	28	129 (1.1+)	
1998	(107 - 114 h								00.45		
	(137 contrôlés) ^b								23 (2.1+)		
									5 (1.2)		
	160 ^b								5 (2.2)	39	116 (1.1+)
1999											
	(132 contrôlés) ^b									20 (2.1+)	
										19 (1.2)	

⁽a) Retours non achevés;

 $⁽b) \ Saumons \ de \ 2^{\grave{e}me} \ remont\'{e}e \ d\'{e}j\`{a} \ revenus \ les \ ann\'{e}es \ pr\'{e}c\'{e}dentes \ ainsi \ que \ les \ sujets \ \'{e}gar\'{e}s \ d'autres \ cours \ d'eau, \ exclus \ du \ calcul.$

Tableau 8 (Partie 3) - Répartition des retours de saumons vierges en Nivelle (nombres estimés arrondis) selon les années de naissances et les années de remontées (saumons de production naturelle). Entre parenthèses : âge d'eau douce et âge marin.

	et les aimee	s de remonte	cs (saumons	de produciio	ni naturene).	Entre parent Estimat	ion nouveau		age marm.							
	Année de naissance (classe)	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
	Nombre de															
	tacons 0+ d'automne	6803	7553	6623	9648	10886	12342	15253	7106	3994	9229	2474	2978	5064	2729	7220
	Retours d'adultes de la classe	172	157	158	245	334	45	121	87	48	92	67	70	149	34ª	34ª
Année de retour	Nombre															
1998	160 ^b (137 contrôlés) ^b	129 (1.1+)														
1999	160 ^b (132 contrôlés) ^b	39 20 (2.1+) 19 (1.2)	116 (1.1+)													
2000	151 ^b (126 contrôlés) ^b	4 (2.2)	36 13 (2.1+) 23 (1.2)	111 (1.1+)												
2001	201 ^b (165 contrôlés) ^b		5 (2.2)	46 29 (2.1+) 17 (1.2)	150 (1.1+)											
2002	362 ^b (277 contrôlés) ^b			1 (2.2)	88 58 (2.1+) 30 (1.2)	273 (1.1+)										
2003	80 ^b (67 contrôlés) ^b				7 (2.2)	55 6 (2.1+) 49 (1.2)	18 (1.1+)									
2004	96 ^b (75 contrôlés) ^b					6 (2.2)	23 15 (2.1+) 8 (1.2)	67 (1.1+)								
2005	92 ^b (69 contrôlés) ^b						4 (2.2)	42 34 (2.1+) 8 (1.2)	46 (1.1+)							
2006	76 ^b (47 contrôlés) ^b							12 (2.2)	35 17 (2.1+) 18 (1.2)	29 (1.1+)						
2007	78 ^b (53 contrôlés) ^b								6 (2.2)	16 9 (2.1+) 7 (1.2)	56 (1.1+)					
2008	79 ^b (55 contrôlés) ^b									3 2 (2.2) 1 (1.3)	34 15 (2.1+) 19 (1.2)	42 (1.1+)				
2009	64 ^b (51 contrôlés) ^b										2 (2.2)	23 8 (2.1+) 15 (1.2)	39 (1.1+)			
2010	137 ^b (124 contrôlés) ^b											2 (2.2)	30 15 (2.1+) 15 (1.2)	105 (1.1+)		
2011	68 ^b (61 contrôlés) ^b												1 (2.2)	41 9 (2.1+) 32 (1.2)	26 (1.1+)	
2012	(45 contrôlés) ^b													3 (2.2)	8 3 (2.1+) 5 (1.2)	34 (1.1+)

⁽a) Retours non achevés;
(b) Saumons de 2^{ème} remontée déjà revenus les années précédentes ainsi que les sujets égarés d'autres cours d'eau, exclus du calcul.

Tableau 9 - Suivi des classes de naissances de 1985 à 2012 chez les saumons atlantiques de la Nivelle (production naturelle uniquement)

Classe de naissance (année a)	Œufs déposés (fin année a-1)	Repeuplement du haut bassin (année a)	Tacons 0+ d'automne estimés	BCI 90 % *	Retours estimés (années a+2, a+3, a+4)	Taux de retour des tacons 0+ (%)
1985	172 000	0	1 362 ^a	[979 ; 1 834]	133	9,77
1986	90 000	37 060	8 065 ^b	[7 151 ; 9 094]	176	11,85
1987	411 000	59 420	11 781 ^b	[10 583 ; 13 100]	263	7,78
1988	266 300	79 410	11 087 ^b	[9 377 ; 13 022]	351	24,12
1989	287 000	30 350	10 657 ^c	[9 245 ; 12 183]	117	7,17
1990	481 600	28 580	5 864 ^d	[5 024 ; 6 838]	231	33,24
1991	745 700	9 040 ^e	6 950 ^e	[5 669 ; 8 398]	472	8,21
1992	528 100	2 800 ^e	4 757 ^e	[3 449 ; 6 332]	288	6,83
1993	709 400	0	4 736 ^f	[3 678 ; 6 006]	190	4,80
1994	1 208 300	18 730 ^e	13 695 ^g	[10 998 ; 16 815]	184	5,37
1995	792 800	2 900 ^e	5 868 ^h	[4 719 ; 7 166]	124	3,77
1996	446 500	0	7 114 ⁱ	[5 420 ; 9 137]	172	2,42
1997	671 000	0	7 526 ⁱ	[5 845 ; 9 498]	157	2,09
1998	387 400	0	6 959 ⁱ	[5 344 ; 8 862]	158	2,27
1999	374 500	0	9 824 ⁱ	[7 927 ; 11 935]	245	2,49
2000	477 000	0	10 838 ⁱ	[8 961 ; 12 898]	334	3,08
2001	388 400	0	12 280 ⁱ	[9 904 ; 15 019]	45	0,37
2002	493 200	0	15 143 ⁱ	[12 181 ; 18 364]	121	0,80
2003	965 000	0	7 094 ⁱ	[5 791 ; 8 538]	87	1,23
2004	453 900	0	4 466 ⁱ	[3 539 ; 5 515]	48	1,07
2005	324 900	0	9 270 ⁱ	[7 591 ; 11 207]	92	0,99
2006	286 500	0	2 589 ⁱ	[1 713 ; 3 662]	67	2,59
2007	313 400	0	3 275 ⁱ	[2 233 ; 4 501]	70	2,14
2008	194 000	0	5 126 ⁱ	[3 615 ; 6 904]	149	2,91
2009	257 800	0	2 828 ⁱ	[1 891 ; 3 945]	34 n	1,20 n
2010	160 700	0	7 172 ⁱ	[5 163 ; 9 530]	34 n	0,47 n
2011	299 000	0	4 784 ⁱ	[3 388 ; 6 528]		
2012	266 800	0	15 293 ⁱ	[11 586 ; 19 776]		
2013	179 000					

- a Basse Nivelle seule.
- b Basse Nivelle accessible et relâchers d'alevins dans la Haute Nivelle et le Lurgorrieta.
- ^c Basse Nivelle accessible et relâchers d'alevins dans la Haute Nivelle, le Lurgorrieta, la Très Haute Nivelle et le Lapitxuri.
- Basse Nivelle accessible et relâchers d'alevins dans la Haute Nivelle, le Lurgorrieta et la Très Haute Nivelle.
- Basse Nivelle, Haute Nivelle, Lurgorrieta accessibles et relâchers d'alevins dans la Très Haute Nivelle.
- f Basse Nivelle, Haute Nivelle, Lurgorrieta accessibles et relâchers de tacons 0* d'automne dans la Très Haute Nivelle.
- g Basse Nivelle, Haute Nivelle, Lurgorrieta accessibles et relâchers d'alevins dans la Très Haute Nivelle et le Lapitxuri.
- Basse Nivelle, Haute Nivelle, Lurgorrieta accessibles et relâchers d'alevins dans le Lapitxuri.
- Basse Nivelle, Haute Nivelle et Lurgorrieta accessibles.
- Très Haute Nivelle non prise en compte dans le calcul car non échantillonnée.
- Très Haute Nivelle non échantillonnée mais prise en compte dans le calcul car l'effectif de tacons 0⁺ est connu (779 tacons relâchers n Retours non achevés
- * BCI 90% Intervalle de Crédibilité Bayesien = [5^{ème} centile de la distribution a posteriori ; 95^{ème} centile de la distribution a posteriori]

Tableau 10 - Effectifs de saumons adultes de la Nivelle de 1984 à 2012

Année	Stock total contrôlé	Stock piégé à Uxondoa	Captures ligne	Taux de poissons de production naturelle (%)	Stock total estimé
1984	146	140	3	18,5	180 (170 – 190)
1985	100	98	0	52	115
1986	256	246	2	62,1	329 (298 - 391)
1987	189	178	3	63,5	218 (207 - 234)
1988	103	86	1	80,6	161 (153 - 173)
1989	201	187	2	99,5	264 (245 - 293)
1990	235	226	1	100	291 (279 - 316)
1991	151	146	3	100	184 (176 - 201)
1992	215	196	1	97,2ª	240 (227 – 254)
1993	369	369	7^{b}	100	472 (449 - 498)
1994	270	270	3	97,6 ^a	325
1995	185	185	0	87,0 ^a	224 (216-232)
1996	192	186	8 ^b	93,8 ^a	228 (224-232)
1997	111	111	1	99,1°	127 (128-129)
1998	145	114	5	95,5 ^a	169 (165-174)
1999	138	136	2	97,8 ^a	167 (162-173)
2000	132	131	4	97,0 ^a	158 (143-176)
2001	167	162	6	98,8ª	203 (199-208)
2002	286	286	8 ^b	97,9 ^a	374 (362-387)
2003	74	73	4^{b}	94,6 ^a	88 (87-90)
2004	82	82	1^{b}	96,3	105 (99-115)
2005	73	73	0	94,5	97 (94-102)
2006	50	49	1	94	81 (70-98)
2007	58	58	1	91,4	85 (82-90)
2008	61	61	0	91,8	86 (78-97)
2009	54	54	0	98,1	68 (66-72)
2010	132	132	0	94,7	161 (156-166)
2011	69	69	0	88,4	90 (82-103)
2012	27	27	1	85,2	91 (64-226)

⁽a) Des saumons égarés de la Bidassoa et de l'Urumea issus de smolts d'élevage marqués, libérés dans ce cours d'eau entre 1991 et 2003, puis contrôlés dans la Nivelle, sont exclus du stock de la Nivelle.

⁽b) Captures connues (y compris non déclarées).

⁽c) Un saumon sauvage du Gave de Pau (porteur d'une radio-marque) exclu du stock de la Nivelle.

Tableau 11 : périodes de désactivation et d'activation des stations de contrôle en 2012 Uxondoa Olha											
	Uxoı	ndoa			Ol	ha	09:00 10:05 16h55 16:45 15:40 10:25 15:30 16:10 15:05 16:50 16:50 16:30 09:30 . 09:30 . 15:45				
Désact	ivation	activ	ation	Désact	tivation	activ	ation				
date	heure	date	heure	date	heure	date	heure				
		06-mars	13:50			14-févr.	08:30				
12-mai	10:00	14-mai	10:00	12-mai	09:20	14-mai	09:00				
19-mai	09:50	21-mai	09:00	19-mai	09:00	21-mai	10:05				
26-mai	09:55	28-mai	16:30	26-mai	09:25	28-mai	16h55				
30-juin	10:15	02-juil	15:20	30-juin	11:10	2-juil.	16:45				
14-juil	11:50	16-juil	15:00	14-juil.	11:20	16-juil.	15:40				
21-juil	12:20	24-juil	10:00	21-juil.	mi-journée	24-juil.	10:25				
28-juil	11:00	30-juil	15:00	28-juil.	11:35	30-juil.	15:30				
04-août	14:00	06-août	16:50	4-août	14h35	6-août	16:10				
11-août	09:50	13-août	15:55	11-août	10:30	13-août	15:05				
18-août	09:20	20-août	16:20	18-août	09:45	20-août	16:50				
25-août	10:30	27-août	14:55	25-août	09:50	27-août	15:25				
01-sept	09:50	03-sept	17:30	1-sept.	09:30	3-sept.	16:30				
08-sept	10:00	10-sept	09:00	8-sept.	10:35	10-sept.	09:30				
15-sept	10:00	17-sept	14:35	15-sept.	09:35	17-sept.	15:45				
22-sept	09:40	24-sept	15:40	22-sept.	12:30	24-sept.	14:50				
06-oct	09:10	08-oct	15:55	6-oct.	10:20	8-oct.	15:25				
13-oct	10:50	15-oct	15:50	13-oct.	09:55	15-oct.	16:55				
20-oct	09:00	22-oct	15:55	20-oct.	10:35	22-oct.	15:00				
27-oct	09:05	29-oct	16:00	27-oct.	10:00	29-oct.	15:15				
03-nov	10:30	05-nov	16:40	3-nov.	09:20	5-nov.	14:50				
10-nov	10:00	12-nov	14:55	10-nov.	09:40	13-nov.	15:20				
17-nov	10:50	19-nov	15:15	17-nov.	10:00	19-nov.	16:00				
22-nov	12:00	23-nov	10:45	24-nov.	09:35	26-nov.	16:30				
24-nov	08:40	26-nov	15:00	28-nov.	10:50	3-déc.	11:10				
28-nov	09:15	30-nov	09:30	5-déc.	11:00	7-déc.	10:10				
01-déc	09:30	03-déc	15:00	8-déc.	09:55	10-déc.	16:30				
05-déc	09:00	06-déc	09:00	15-déc.	?	17-déc.	10:00				
08-déc	09:00	10-déc	14:00	18-déc.	10:00	18-déc.	17:00				
15-déc	10:00	17-déc	10:20	19-déc.	08:30	19-déc.	17:00				
21-déc	10:20			20-déc.	09:30	20-déc.	17:00				
				21-déc.	11:10						